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This paper presents a description of the CESM/DART ensemble coupled data

assimilation (DA) system based on the Community Earth System Model (CESM)

and the Data Assimilation Research Testbed (DART) assimilation software. The

CESM/DART should be viewed as a flexible system to support the DA needs of the

CESM research community and not as a static reanalysis product.

In this implementation of the CESM/DART, conventional in situ observations of

the ocean and atmosphere are assimilated into the respective component models

of the CESM using a 30-member ensemble adjustment Kalman filter (EAKF).

CESM/DART is run in a “weakly coupled” configuration wherein observations

native to each climate system component only directly impact the state vector for

that component. Information is passed between components indirectly through the

short-term coupled model forecasts that provide the EAKF background ensem-

ble. This system leverages previous ensemble DA development for the Community

Atmosphere Model and Parallel Ocean Program models using the DART EAKF. The

CESM/DART project is a step towards providing increasingly useful DA capabilities

for the CESM research community.

Results are presented for our prototype 12-year reanalysis, run from 1970 to mid

1982. Multiple lines of evidence demonstrate that the system is capable of constrain-

ing the CESM coupled model to simulate the historical variability of the climate

system in the well-observed Northern Hemisphere. A collection of monthly average

variables, climate mode indices, observation diagnostics and snapshots of synoptic

weather in the ocean and atmosphere are compared to established datasets, show-

ing especially good agreement in the Northern Hemisphere. A discussion of the

CESM/DART as a modular, community facility and the benefits and challenges

associated with this vision is also included.
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1 INTRODUCTION

Since the mid 1990s, when the development and produc-

tion of historical climate reanalyses became an established

enterprise, most major modelling and operational forecasting

centres have conducted their ocean and atmosphere reanal-

yses as complementary, but essentially separate, activities.

For example, at the National Centers for Environmental

Prediction (NCEP), the NCEP/NCAR reanalysis project

(NCEP-R1; Kalnay et al., 1996) and NCEP/DOE reanaly-

sis (NCEP-R2; Kistler et al., 2001; Kanamitsu et al., 2002)

used gridded sea surface temperature (SST) products as their

marine boundary conditions. The Global Ocean Data Assim-

ilation System (GODAS; Behringer et al., 1998; Behringer

and Xue, 2004) system, also developed at NCEP, was pro-

duced in a separate effort, leveraging the surface fields of the

NCEP atmospheric reanalyses. Until recently, the European

Centre for Medium-Range Weather Forecasting (ECMWF)

had a similar separation of efforts. Their series of ERA

products (ERA-15, ERA-Interim, ERA-40; Uppala et al.,
2005) were all produced using prescribed SST boundary

conditions, while their ocean reanalyses (ORA v.1 to v.4)

have been forced with the ERA atmospheric surface fields

(e.g. Mogensen et al., 2012; Zuo et al., 2015). In both the

NCEP and the ECMWF products, the analyses of the ocean

and atmosphere were essentially performed independently,

with data assimilation (DA) practices that were designed to

reflect the dominant time- and space-scales and observational

sources for either the ocean or atmosphere systems.

In the last decade, however, there has been increasing inter-

est in the development of coupled ocean–atmosphere DA

systems which can be used for generating coupled reanal-

ysis products and for initializing near-term coupled climate

predictions. Broadly categorized, the anticipated benefits of

performing DA in a coupled configuration may include

(a) better representation and constraint of coupled phenom-

ena, near-surface processes, and air–sea fluxes;

(b) more straightforward use of interface observations (e.g.

skin SST and surface wind stress); and

(c) representation of the joint uncertainty in the coupled

ocean–atmosphere analysis.

There is also evidence from a limited set of studies that cou-

pled assimilation may reduce forecast “initialization shock”,

potentially leading to improved forecast performance on

time-scales of weeks to decades (e.g. Zhang et al., 2007;

Balmaseda et al., 2009; Zhang, 2011; Mulholland et al.,
2015).

Recognizing the potential benefits of coupled assimila-

tion and initialization, research and operational centres have

made rapid progress in the development of coupled assimi-

lation systems in the last decade. The National Oceanic and

Atmospheric Administration Geophysical Fluid Dynamics

Laboratory (NOAA GFDL) was the first centre to produce

a coupled reanalysis for initializing seasonal forecasts. Their

ensemble coupled DA (ECDA; Zhang et al., 2007; Chang

et al., 2013) product was based on the ensemble adjustment

Kalman filter (EAKF; Anderson, 2001; 2003). They miti-

gated the costs and complexities associated with atmospheric

assimilation by ingesting the NCEP-R1 and R2 gridded prod-

ucts into their coupled model – focusing their development

efforts on the assimilation of altimetry and subsurface ocean

hydrography into their ocean model. Experimental systems

have been developed at the Japan Agency for Marine–Earth

Science and Technology (JAMSTEC) and the UK Met Office.

JAMSTEC has developed a coupled ocean–atmosphere 4D

variational (4D-Var) system for initializing seasonal forecasts

and conducted experimental simulations over a three-year

period. They used ocean initial conditions and adjustment

factors in the surface turbulent flux parametrizations as con-

trol variables for their nine-month window 4D-Var (Sugiura et
al., 2008). The UK Met Office has designed a cycled coupled

assimilation system to support seamless prediction (hourly

to seasonal). It adjusts the coupled state using updates from

separate 3D-Var ocean and 4D-Var atmosphere systems (Lea

et al., 2015). It has been prototyped in only short (one year)

experiments.

At the time of writing, only two coupled ocean–atmosphere

DA efforts have progressed to the stage where multi-decade

state-of-the art reanalysis products for both ocean and atmo-

sphere have been generated. NCEP has produced the Climate

Forecast System Reanalysis (CFSR) from 1979 to the present

(Saha et al., 2010). The CFSR coupled system uses NCEP’s

seasonal coupled forecasting model and cycled updates are

computed and implemented with their separate, pre-existing

assimilation systems for the atmosphere and the ocean. The

ECMWF has produced 10 ensembles of a coupled reanalysis

from 1901 to 2010 based on the Coupled ECWMF ReAnal-

ysis system (CERA; Laloyaux et al., 2016a). Like the CFSR

system, the CERA system was built by bringing together

the existing ECMWF DA systems for the ocean and atmo-

sphere components. It is based on a 24 h window incremental

4D-Var method, wherein the separate ocean and atmosphere

variational systems are applied to the innovations in the inner

loops, and the outer-loop forecasts are performed with the

coupled model. In this way, observational information prop-

agates across the ocean–atmosphere interface through the

outer-loop forecasts.

These developments have established the historical con-

text for efforts that are progressing at the National Center

for Atmospheric Research (NCAR) to develop DA capa-

bilities for the Community Earth System Model (CESM).

The purpose of this paper is to present an overview of the

coupled global DA system (referred to as CESM/DART)

developed at NCAR. The CESM/DART is a framework

for ensemble DA that can be used for constraining cou-

pled atmosphere–ocean–ice–land simulations of the CESM.

CESM/DART uses an ensemble Kalman filter algorithm

implemented in the Data Assimilation Research Testbed soft-

ware (DART; Anderson and Collins, 2007; Anderson et al.,
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2009). Like the CESM, DART is an open-source facility,

developed and maintained by NCAR scientists.

The CESM (and its predecessor model, the Community

Climate System Model) has a long history of use as a research

tool for the investigation of Earth System processes and Earth

System response to changes in atmospheric composition. Its

successful use in those arenas have, more recently, led to

its use in experimental initialized prediction applications.

Examples of this include two CESM-based contributions to

the National Multi-Model Ensemble database for seasonal

prediction (NMME; Kirtman et al., 2014)1, initialized global

prediction on multi-year to multi-decade time horizons

(Yeager et al., 2012; Meehl et al., 2014; Karspeck et al.,
2015), multi-year prediction with eddy-resolving ocean mod-

els (B. Kirtman, personal communication, 2017), Arctic sea

ice prediction (Blanchard-Wigglesworth et al., 2017) and

short-term prediction of tropical cyclone tracks (Zarzycki and

Jablonowski, 2015). Notably, these applications either require

the initialization of model components other than the atmo-

sphere, or in the case of cyclone prediction, may realize some

benefit from doing so. While only one of these existing efforts

have used CESM-based DA as the means of initializing the

model (Karspeck et al., 2015), every initialized prediction

effort using CESM models could be supported with a native

DA and initialization capability. The CESM/DART project is

a step towards providing increasingly useful DA capabilities

for the CESM research community.

Like most of the coupled assimilation systems currently

being used or developed, the CESM/DART project leverages

previously developed DA capabilities for the ocean (Karspeck

et al., 2013) and atmosphere (Raeder et al., 2012) components

of the CESM. One of the attractive attributes of the DART

framework for coupled DA is that these single-component

assimilation systems are based on the same algorithm,

software implementation, format standards for storing and

processing observational data, and routines for interfacing

with the CESM. In the prototype experiment discussed here,

data are only assimilated directly into the ocean and atmo-

sphere, however DA capabilities using DART have also been

developed for the land (Zhang et al., 2014) and sea-ice com-

ponents (Y.-F. Zhang and C. Bitz, personal communication,

2017) of the CESM. The basic framework presented here is

extensible to incorporate these other major components.

In addition to a description of the CESM/DART frame-

work, we also present a selection of results from the 12-year

prototype coupled ocean–atmosphere assimilation experi-

ment which we performed over the period January 1970 to

March 1982. Results from this experiment are compared to

existing data products to evaluate both interannual variability

as well as synoptic weather patterns. We also show perfor-

mance metrics relative to conventional in situ observations

of the ocean and the atmosphere. The results presented here

1The Community Climate System Model version 3, used in the NMME, is a

predecessor model to the CESM

are not an exhaustive evaluation of the system performance,

but rather a demonstration that the CESM/DART system can

constrain both interannual and synoptic historical variability.

This paper is meant to highlight the initial success of this

effort, discuss some of the challenges, and open the door for

further improvements and developments of the CESM/DART

system.

2 A COUPLED ASSIMILATION SYSTEM
FOR THE CESM

2.1 The CESM model

The model used for assimilation in this experiment is the

global coupled configuration of the CESM version 1.1

(CESM1; Hurrell et al., 2013) with active atmosphere, ocean,

land and sea-ice components. The atmosphere component

is the Community Atmospheric Model version 5 (CAM5;

Neale et al., 2012) with a finite volume dynamical core,

the ocean model is the Parallel Ocean Program version 2

(POP2; Danabasoglu et al., 2012), the sea-ice component is

the Community Ice Code version 4 (CICE4; Holland et al.,
2012) and the land model is the Community Land Model

version 4 (CLM4; Lawrence et al., 2011). All components

were run with a nominal 1◦ horizontal resolution. The con-

figuration used here is effectively the “workhorse” coupled

version of the CESM. For all relevant scientific purposes,

this CESM configuration is equivalent to the model ver-

sion used to produce NCAR contributions to the Coupled

Model Intercomparison Project phase 5 (CMIP5; Taylor et
al., 2012) and the CESM Large Ensemble Project (Kay et al.,
2015). One difference, however, is that the model coupling

frequency between the ocean and atmospheric components

is increased from the CESM1 default of once per day to once

every 6 h. As will be described in the following section, the

assimilation update is applied to the atmospheric state at 6 h

intervals. Increasing the coupling frequency ensures that the

ocean state is impacted by the atmosphere updates through

the model coupling. Although the model may have detectable

differences in behaviour within the atmospheric and oceanic

boundary layers due to changes in the coupling frequency,

in this version of CESM (where the diurnal cycle in SST is

parametrized within the model coupler) there are no obvious

physical implications related to this choice.

For the purpose of ensemble DA, the CESM is run in a

“multi-instance” configuration (Figure 1). In this configura-

tion, the traditional spoke-and-hub CESM modular design,

wherein a single coupler manages the communication of

fluxes between components, is extended to multiple instances

of each component. Each instance is uniquely matched across

the components. For example, CAM instance number 1

exchanges fluxes exclusively with POP instance number 1.

In this way, the solutions from multi-instance CESM will

be bit-for-bit identical to an ensemble of traditional CESM
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FIGURE 1 Schematic diagram of the CESM coupled model in the

multi-instance configuration. Each model component can have multiple

instances, but a single coupler manages the communication of all

fluxes between components [Colour figure can be viewed at

wileyonlinelibrary.com]

simulations. The primary benefits of the multi-instance

configuration are ease of implementation and ease of ensem-

ble management. The disadvantages of this configuration are

that (a) the use of a single coupler breaks what could oth-

erwise be a parallel ensemble simulation process and (b)

the failure of any instance (whether for dynamical or com-

putational reasons) will lead to the termination of all the

instances.2

2.2 The ensemble DA system and coupled framework

Most modern systems used for global ocean or atmosphere

DA fall into the categories of either variational systems or

ensemble Kalman filters. Although very different in their

implementation, both of these methods can be understood

from a Bayesian perspective: given prior knowledge of the

distribution of the multivariate model state (called the “back-

ground”), the goal is to find a posterior distribution for the

multivariate model state (called the “analysis”) as the condi-

tional probability of the model state given the observations.

Under commonly made assumptions of linear models and

observation operators and Gaussian observational error distri-

butions, optimal solutions can be obtained by either of these

methods by consideration of only the mean and the covari-

ances of the prior distribution and observational errors.3

The DA scheme used in both the ocean and the atmosphere

is an ensemble adjustment Kalman filter (EAKF; Ander-

son, 2001) as implemented in the DART software. As in all

Kalman filters, the prior covariance can be non-stationary

because it is evolved through time by the model dynamics.

2As of the time of writing, implementation of a fully parallel multiple-coupler

CESM ensemble configuration is planned for the CESM version 2 release.
3These assumptions are always violated in problems of geophysical DA,

but they remain useful approximations, and necessary in many cases for

formulating a computationally tractable problem.

This is one of the strengths of Kalman filters as applied to

complex geophysical systems. The central idea is that the

relevant features of the distribution can be estimated from the

statistics of the ensemble members. The EAKF is a determin-

istic variant of the ensemble Kalman filter (which was intro-

duced within the literature by Evensen 1994). It falls within

the general class of ensemble Kalman square-root filters

(Tippett et al., 2003), which also includes the ensemble trans-

form Kalman filter (Bishop et al., 2001). This class of filters

transforms the prior state ensembles such that the posterior

ensembles have a mean and covariance that is consistent

with the full Kalman filter analysis for a sufficiently large

ensemble.

In Anderson (2003), the EAKF update is described in a

conceptually straightforward manner as a sequence of scalar

computations that involves (a) an adjustment to the ensem-

ble in the scalar space of a single observation, and (b) the

subsequent update of each variable in the model state vec-

tor via linear regression based on the ensemble statistics.

The assumption of uncorrelated observational errors is cen-

tral to the validity of this sequential algorithm. Anderson

and Collins (2007) describe the parallel implementation of

this algorithm, and can be referenced by readers interested in

many of the technical details of the DART software.

In this CESM/DART experiment, observations of the

ocean and atmosphere (described in the next section) are

assimilated into the atmosphere and ocean components of the

coupled CESM model in a multi-component or weakly cou-
pled framework. In a weakly coupled approach, the analysis

increments applied to the state variables of a given compo-

nent are based only on observational innovations local to that

component. Thus, updates to the ocean and atmosphere states

can be computed through completely independent instanti-

ations of the DART system. However, between updates, the

ensemble of simulations is advanced by a coupled model,

exchanging heat, freshwater, and momentum fluxes across

the component interfaces.

Thirty instances of the CESM coupled model are advanced

in 6 h forecasts; the model program comes to a complete halt

at the end of each forecast and writes an ensemble of files con-

taining the state vectors of the POP and CAM components.

At 0000, 0600, 1200, and 1800 UTC, a CAM instantiation

of the DART program (CAM/DART) reads in the ensemble

of atmospheric states and uses atmospheric observations col-

lated across a centred 6 h window to perform the state update.

The prognostic atmospheric state vector that is updated by

the assimilation consists of temperature, specific humid-

ity, vector winds, and surface pressure at each model grid

point. All relevant details of the CAM implementation of

the 30-member DART EAKF are described in Raeder et al.
(2012). At 0000 UTC ocean observations collated across a

centred 24 h window are additionally assimilated into the

ocean component using a POP instantiation of the DART

program (POP/DART). The prognostic ocean state vector

that is updated by the assimilation consists of temperature,

http://wileyonlinelibrary.com
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FIGURE 2 Schematic of the DART system interacting with the CESM in

the “weakly coupled” configuration. In this configuration, POP and CAM

couple every 6 h (CAM and CICE also couple every 6 h and CAM and CLM

couple every 0.5 h). The DART assimilation updates the CAM state with

atmospheric observations every 6 h (at 0000, 0600,1200,1800 UTC) with

binned observations within ±3 h windows. Ocean observations are

assimilated using a separate DART system every 24 h (at 0000 UTC), with

binned observations within ±12 h windows. The CICE and CLM models are

integrated with the CESM and, while their state vectors are never directly

updated by the assimilation, they receive information indirectly through the

model coupling [Colour figure can be viewed at wileyonlinelibrary.com]

salinity, vector current, and sea level height at each model

grid point. The 30-member DART EAKF system as applied

to the POP model has been documented in Karspeck et al.
(2013). As mentioned before, no updates to the land and

sea-ice components of the CESM are made – they receive

information only indirectly through the model integration.

A schematic representation of this configuration is shown in

Figure 2. After the POP/DART and CAM/DART programs

update the ensembles of ocean and atmosphere states, CESM

restarts, reads in the updated state vectors, and advances the

next set of 6 h forecasts. Note that for both CAM/DART and

POP/DART, ensemble prior estimates of all observations in

a window are computed as if the observations were taken at

the analysis time.

In this implementation, both the CAM/DART and the

POP/DART systems employ the spatially and temporally

varying adaptive inflation algorithm of Anderson (2009) as

well as covariance localization (in the horizontal and vertical)

based on the Gaspari and Cohn (1999) distance-dependent

functional form (Anderson and Collins, 2007). The covari-

ance inflation is applied to the prior ensembles at the 6 h

assimilation intervals in the atmosphere and at the 24 h

assimilation intervals in the ocean. In this implementation

of the adaptive inflation algorithms, no deflation is permit-

ted. Table 1 details the relevant parameters of the ocean and

atmosphere filters. Note that no formal tuning was performed

to arrive at these filter parameters; parameters were set to

values that are standard in the community or were observed

in previous experience to yield acceptable filter performance.

For example, our experiences with the POP/DART system

suggested that the adaptive inflation algorithm could lead

to regional pockets of very high inflation in the ocean that

could excite numerical instabilities in the ocean model. Thus

an imposition of a maximum inflation of 20% was set in

the ocean. There was no evidence that the CAM/DART sys-

tem needed a conservative limit on the adaptive inflation

algorithm.

The 30 ensemble members used to initialize the filter were

taken from a single date in the CESM Large Ensemble (LE)

simulation (these can be interpreted as samples from a cli-

matological distribution). Biases in the ocean temperature

and salinity fields of the LE were estimated as the difference

between the ensemble monthly mean in January 1970 and the

climatological January values from the World Ocean Atlas

(Locarnini et al., 2013a; Zweng et al., 2013b). This bias was

then subtracted from the ocean temperature and salinity from

each member of the LE.

2.3 In situ observations of the ocean and atmosphere

Table 2 lists all the ocean and atmosphere observations

that are assimilated into the CESM/DART system in this

TABLE 1 Details of the CESM/DART EAKF for the ocean and atmosphere components

Atmosphere assimilation Ocean assimilation

Data assimilation method CAM/DART EAKF POP/DART EAKF

No. in the ensemble 30 30

Covariance inflation Multiplicative Multiplicative

Adaptive (Anderson, 2009) Adaptive (Anderson, 2009)

Applied to prior every 6 h Applied to prior every 24 h

𝜆min;max = 1; 10 𝜆min;max = 1; 1.2

Localization function Gaspari and Cohn (1999) Gaspari and Cohn (1999)

Horizontal half-width 0.2 radians (∼ 1000 km) 0.2 radians

Vertical half-width 200 mb 750 m

Observational error variance NCEP prepbufr reports Karspeck (2016)

(assumed uncorrelated) (assumed uncorrelated)

The minimum and maximum multiplicative inflation factors are given by 𝜆min;max.

http://wileyonlinelibrary.com
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TABLE 2 List of observations used in the CESM/DART experiment

Ocean observation type Ocean variable Assimilation time (UTC) Window

CTD/STD/mooring/bottle In situ temperature 0000 24 h

In situ salinity 0000 24 h

XBT/MBT/drifters In situ temperature 0000 24 h

Atmospheric observation type Atmospheric variable

Radiosondes/dropsondes Upper-air temperature 0000/0600/1200/1800 6 h

Upper-air wind 0000/0600/1200/1800 6 h

Upper-air humidity Not assimilated —

Aircraft reports/ACARS Upper-air temperature 0000/0600/1200/1800 6 h

Upper-air wind 0000/0600/1200/1800 6 h

Satellite drift winds Upper-air wind 0000/0600/1200/1800 6 h

experiment, the time of day that the observations are assim-

ilated, and the window over which they are aggregated.

The vast majority of atmospheric data are from radiosonde

and aircraft reports of temperature and winds. The influ-

ence of data above 100 mb was curtailed following findings

by Raeder et al. (2012) that assimilation into the lower

stratosphere in CAM/DART led to degraded performance.

Following from Karspeck et al. (2013), in situ ocean obser-

vations are processed from the 2009 World Ocean Database

(Johnson et al., 2009). In the 1970s, the ocean is primarily

observed through temperature measurements from XBT pro-

files and bottle samples from ocean stations. Figure 3 shows

locations of the atmosphere and ocean observations over

representative summer and winter months during the 1970s.

As is evident in these maps, the network of both oceanic

and atmospheric observations is exceedingly sparse over the

Southern Hemisphere oceans in this decade, especially pole-

ward of 30◦S. The footprint of the static radiosonde network

over land is apparent, providing relatively even coverage over

the Northern Hemisphere land. This network is augmented

by intermittent observations over the open ocean, especially

in the North Atlantic and North Pacific basins, and along

intercontinental routes connecting major cities. As in all

decades prior to the Argo era, oceanic observations tend to

be clustered near the basin boundaries and along shipping

routes, leaving vast areas of the global ocean completely

unobserved.

There are a number of key observational sources for con-

straining the coupled ocean–atmosphere system that were

available in the 1970s but are not included in this experiment.

These include

(a) marine and land-based in situ surface pressure, air temper-

ature, and winds;

(b) radiosonde humidity; and

(c) surface skin temperature and upper-air profiles from

infrared satellite radiometers.

Other data sources that are available in later decades include

sea surface height from along-track altimetry, in situ hydrog-

raphy from the Argo profiling floats, surface winds from

radar scatterometers, atmospheric soundings from GPS radio

occultation and satellite microwave radiometers, and satellite

cloud-drift winds. Given code for a forward operator within

the DART system that maps from the ocean or atmosphere

model state vector to the measured data, the CESM/DART

can potentially ingest any of these data types. For obser-

vational sources that are closely linked to the model state

variables (such as retrieved sea level height or in situ surface

pressure), the forward operator can be as simple as an interpo-

lation from the model prognostic state vector. Implementation

FIGURE 3 Location of oceanic (blue) and atmospheric (red) observations at any height or depth during the months of (a) July 1971 and (b) January 1975
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of forward operators for radiances or radio occultation data

is far more complex. For example, a forward operator for

radiances requires the use of a numerical radiative transfer

model and careful accounting for biases and nonlinearities in

this mapping. DART currently includes forward operators for

radio occultation observations and can use any forward oper-

ators available as part of the NCEP GSI, including radiances.

Future developments within the CESM/DART will involve

the progressive addition of these key historical data sources.

3 RESULTS FROM A 12-YEAR
EXPERIMENT

A prototype coupled reanalysis has been run from Jan-

uary 1970 to March 1982, following the framework out-

lined above. The original plan was to extend the analysis

to the near-present, however computing- and time-resource

limits resulted in a substantial reduction in the scope of

the experiment. In the course of this experiment, a great

deal has been learned about the computational bottlenecks

in the CESM/DART system (see Discussion). The assimila-

tion experiment which was completed should be considered

a “proof-of-concept” for coupled ocean–atmosphere assimi-

lation with the CESM model.

As this is the first multi-year coupled DA experiment

using the CESM model, there is no obvious benchmark

against which to measure the performance of the system.

A free-running coupled integration of the CESM, initialized

from one of the ensemble members (hereafter “NoAssim”),

provides one such reference point. We also contextualize the

performance of the system in terms of other well-regarded

climate reanalysis products. We show multiple lines of evi-

dence that the system is able to reasonably constrain both

the historical synoptic and monthly scale variability of the

atmosphere and upper ocean. This is not an exhaustive evalu-

ation of this reanalysis, but we show results that are generally

representative of the global performance of the system.

The validation emphasis is necessarily placed on atmo-

spheric variables, as these are far more plentiful in the 1970s

than ocean observations. The deep ocean is essentially uncon-

strained in this experiment and, not surprisingly, exhibits

decadal-scale drifts in temperature and salinity that are char-

acteristic of ocean simulations that are not in equilibrium with

the atmosphere. Results show that, as expected, the simula-

tion is of higher quality in the Northern Hemisphere (relative

to the Southern) where the vast majority of the observational

data are located.

We remind the reader that only a limited set of the obser-

vational sources available in the 1970s and early 1980s was

used and that no formal tuning for the coupled assimila-

tion system was performed. Thus, there is every reason to

believe that, with the inclusion of additional observational

platforms and dedicated tuning efforts, the performance of the

CESM/DART system would be improved.

3.1 Observation-space diagnostics

The DART software provides utilities for comparing model

solutions that have been mapped to the observed data type at

the measurement location directly to the observations. (These

utilities draw on the same forward operators that are used

in the assimilation scheme). These observation-space diag-
nostics are a common means of assessing the performance

of operational atmospheric reanalysis products because they

provide an unambiguous means of comparing to the raw

observations. Comparisons can be performed for both the

short-term background forecasts and also the updated analy-

sis, allowing error reductions due to the assimilation of all the

available observations to be monitored. Figure 4a) shows time

series of the ensemble mean root mean square (rms) error and

ensemble spread (expressed as a standard deviation around

the ensemble mean) of temperature at the 500 mb pressure

level for all radiosonde observations globally within weekly

windows. Note that inflation has been applied prior to the

computation of these diagnostics. As expected, the rms errors

and ensemble spread following the update (thin lines) are

always lower than for the background forecast (thick lines).

Forecast errors decrease during the first 5 years of the assim-

ilation, evidence of a gradual improvement in the quality of

the atmospheric state. Interestingly, this multi-year decrease

in atmospheric error is longer than would be expected from an

atmosphere-only assimilation system (which we might expect

to equilibrate on the order of weeks). This decline in rms

error is not coincident with an increase in the total number

of observations ingested. In fact, Figure 4b shows that there

is a slight decrease in the number of observations assimi-

lated over this time. While we cannot say definitely that this

behaviour results from coupling with the ocean, one hypothe-

sis is that the slow-time-scale improvement in the atmospheric

state stems from a multi-year equilibration of the upper-ocean

and atmosphere systems. Note that the time evolution of

the observation-space diagnostics are qualitatively similar for

temperature at other pressure levels and for the horizontal

vector wind components (not shown).

From Figure 4, we also see that there is a clear correspon-

dence between the time evolution of the rms error and the

ensemble spread – suggesting that the ensemble spread is

providing some indication of the expected forecast error.

Figure 5 shows the time-average of the radiosonde temper-

ature rms error from January 1976 (after skill has stabilized)

to March 1982 at pressure levels through the troposphere.

Because radiosonde temperature is commonly used in obser-

vational diagnostics for atmospheric reanalysis, we are able

to put the CESM/DART performance in the context of three

current-generation reanalyses with published radiosonde rms

error metrics – the Japanese 55-year ReAnalysis (JRA-55;

figure 8 of Kobayashi et al., 2015), CFSR (figure 3 of

Saha et al., 2010) and ERA-40 (figure 8 of Uppala et al.,
2005). For JRA-55 and ERA-40, we show errors from the

decade of the 1970s, and for CFSR (which is only available
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FIGURE 4 (a) Root mean square error (blue) and ensemble spread (standard deviation; green) of 500 mb radiosonde temperatures aggregated over 1 week

periods over the global set of observations at 0000 UTC. Bold lines denote the 6 h forecast priors, and thin lines the posteriors. (b) Total number of

observations ingested by the atmospheric assimilation each week

since 1979) we show error levels from the early 1980s. Our

6 h background skill is roughly comparable to 9 h background

forecasts from CFSR and ERA-40 and roughly 20% less skil-

ful than the JRA-55 published estimates. It is important to

note that these are only approximate comparisons – a formal

comparison would require that we assess against identical

sets of data and at identical forecast leads. (Quality control

procedures that determine whether a observation is valid for

verification will be different for each of these systems. Note

that we validate against all the radiosonde data, even those

data that are excluded from the assimilation.) To have error

levels that are slightly worse than, but in the same general

range as, these operational products is a very promising result;

not only do the JRA-55, CFSR, and ERA-40 products ingest

more data sources, they are also very mature systems that have

benefited from decades of development. For both radiosonde

and zonal wind, we also outperform 24 h persistence forecasts

(from our posterior analysis) at nearly all levels in these global

statistics. A notable exception is the atmospheric low-level

winds, where 6 h forecasts do not beat 24 h persistence

forecasts. We believe this is due to the rapid development

of systematic biases in the low-level atmosphere winds in

CAM5 (J. Bacmeister, personal communication, 2017).

Root mean square departures from XBT and bottle (ocean

station data) observations of ocean temperature in the upper

250 m are shown in Figure 6. As expected in this aggre-

gated measure, the prior error always exceeds the posterior

error. The reduction in error from the EAKF update is

typically less than 10% – which can be understood as a con-

sequence of the relatively large error of representation in

a non-eddy-resolving ocean model relative to the resolved

model variability in the upper ocean (Karspeck, 2016). In

the Tropics, where eddy activity is less dominant, the update

decreases rms error by up to 30% (not shown). However, in

part because of the scarcity of ocean observations and the

inhomogeneity of the observing network used for verifica-

tion, it is not evident from this diagnostic that the ocean state

is becoming more faithful through time. The dominant signal

is an apparent seasonal cycle in the rms error. Our investi-

gations suggest that this is actually an artifact of systematic

seasonal changes in the location of in situ observations. In

boreal summer and into autumn, ships taking XBT mea-

surements were more likely to traverse the ocean at higher

northern latitudes, where the ocean has larger systematic

biases in the upper-ocean temperature (Figure 7). These high

latitudes are less frequently sampled in the winter and early

spring. In the next section, we show some evidence that the

ocean solution is becoming progressively more consistent

with gridded ocean products (note the evolution of pattern

correlations in Figure 12). We would expect to see a greater

impact of the update step and enhanced overall performance
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FIGURE 5 Time average of root mean square error of the global set of (a) radiosonde temperature and (b) zonal wind as a function of atmospheric pressure

level for January 1976 to March 1982. Thick blue is the 6 h forecast prior, thin blue is the posterior analysis. Dashed lines indicate the performance of a 24 h

persistence forecast from the posterior mean. For comparison, the red markers indicate existing published estimates of performance from three operational

products: JRA-55 (+), CFSR (x), ERA-40 (o)

FIGURE 6 (a) Prior root mean square error of ocean temperature for the global set of in situ observation platforms aggregated over upper 250 m and over

1 week intervals. (b) The difference between the prior and the posterior rmse expressed as a percent of the prior rmse [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 7 (a) SST difference (◦C) – time-mean CESM/DART minus the HADISST dataset – over the 1970–1982 period. (b) is as (a) but for the NoAssim

control integration minus the HADISST dataset. Note that the HADISST product is not used in the CESM/DART simulation. [Colour figure can be viewed at

wileyonlinelibrary.com]

in tests with the more extensive modern observing net-

work (including Argo floats and satellite altimetry). Indeed,

Karspeck et al. (2013) show a similar seasonal cycle in

the upper ocean prior rms error which disappears as Argo

comes online.

3.2 Comparison of monthly averages to global
gridded products

Here we show comparisons of the CESM/DART simulation

to a collection of monthly average global gridded prod-

ucts including SST from the Hadley Centre Global Sea Ice

and Sea Surface Temperature dataset (HADISST; Rayner

et al., 2003), zonal wind-stress and sea level pressure from

the CERA 20th century coupled reanalysis (CERA20C;

Laloyaux et al., 2016b) and upper-ocean temperature from

the EN4 dataset (Good et al., 2013). We choose these prod-

ucts to reflect a set of variables that are commonly assessed

in global climate models, reflecting large-scale patterns of

climate mean state and variability, and for which there are

observed data over the decade of assimilation. We also com-

pare the atmosphere temperature, zonal wind, humidity and

precipitation to the ERA-40 and JRA-55 reanalyses prod-

ucts. Note that for HADISST, EN4, ERA-40, and JRA-55

there is overlap in the in situ ocean and/or atmosphere data

ingested in this CESM/DART experiment, however none of

these gridded products was used directly in the production.

(This point is especially important in regard to the SST prod-

ucts. Both the CERA20C and CFSR products use gridded

SST products to stabilize their simulations – we do not.) The

CERA20C atmosphere is constrained only by surface pres-

sure and marine surface winds and these data sources are not
ingested in the CESM/DART experiment. In every case, the

CESM/DART simulation results are based on monthly (and

ensemble) averages of 6 h forecasts and are interpolated from

the CESM native grid to the product grid for comparison.

Climatological means are computed for each dataset as the

average over the 12-year period of consideration.

http://wileyonlinelibrary.com
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FIGURE 8 Time- and zonal-mean atmospheric temperature difference over 1970–1982. (a) CESM/DART minus ERA-40, and (b) the NoAssim control

integration minus ERA-40. Black contours are differences at −2, −1, 1, and 2 K. White contours show the CESM/DART mean field, with the bold dashed

line denoting 290 K and contour intervals of 10 K [Colour figure can be viewed at wileyonlinelibrary.com]

3.2.1 Mean state
In general, the mean state of the CESM/DART in the Northern

Hemisphere is more realistic than a free integration (NoAs-

sim) of the CESM when compared to all datasets mentioned

above. (The unconstrained NoAssim coupled simulation will

be used as a reference throughout this section. Note that

NoAssim is not a sequence of short-term forecasts; it is a

12-year coupled integration of CESM.) As three illustrations

of the improvement in mean state, we show the time-averaged

SST (Figure 7) and the zonal- and time-averaged temper-

ature and zonal wind in the atmosphere (Figures 8 and 9,

respectively). The assimilation significantly reduces biases

in the Northern Hemisphere SST. Prominent biases through-

out the North Pacific, in the tropical Atlantic, and along the

path of the Gulf Stream are typical of the CESM model

(figure 6 of Danabasoglu et al., 2012). In contrast, consis-

tent with the lack of observational constraints in the South-

ern Hemisphere, there is not significant improvement in

the Southern Hemisphere SST. In fact, the mean state of

the central South Pacific SST is slightly worse relative to

the HADISST.

The zonal- and time-average temperature in the atmosphere

and its bias relative to the ERA-40 are shown in Figure 8. The

cold polar tropopause bias (equivalent to a tropopause that

is too high), which has been documented in older versions

of the CAM (e.g. Neale et al., 2013) as well as CAM54, is

4Online diagnostics from CAM5 in the context of the CESM Large Ensem-

ble project can be viewed at http://www.cesm.ucar.edu/experiments/cesm1.

0/; accessed 5 September 2018.

virtually eliminated in CESM/DART in the Northern Hemi-

sphere, and reduced to near-negligible levels in the Southern

Hemisphere. Consistent with a tropopause that is too high, the

zonal-mean wind bias in the NoAssim shows polar jets that

are also too high (Figure 9b). Jets are also too far south in

both hemispheres. These biases in NoAssim are robust to the

choice of atmospheric reanalysis product used for compari-

son. Again, these biases are eliminated in the CESM/DART

simulation. Surface subtropical easterlies are also weakened

in CESM/DART (Figure 9a) – another improvement to a

well-documented bias in CAM.

However, the NoAssim warm bias in the middle tro-

posphere in the Southern Hemisphere is intensified with

assimilation, resulting in a weakened midlatitude merid-

ional temperature gradient that is balanced (through the

thermal wind relation) by a large-scale reduction in South-

ern Hemisphere middle-troposphere westerlies. Although

the reduction in Southern Hemisphere surface westerlies

appears to be an improvement (Figure 10), it is associ-

ated with the spurious weakening of the westerlies above

the boundary layer. A more detailed investigation of the

mean-state degradation in the upper levels of the atmo-

sphere while surface winds are improved in the Southern

Hemisphere is beyond the scope of this paper. However,

it is worth noting that spurious circulation features can

arise when model biases are corrected in only selective

regions of the globe. This is always a possibility when

observational networks are inhomogeneous on hemispheric

scales.

http://wileyonlinelibrary.com
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FIGURE 9 As Figure 8, but for atmospheric zonal wind. Black contours are differences drawn at −2, −1, 1, and 2 m s−1. White contours are the

CESM/DART mean field, with the bold dashed line denoting 0 m s−1 and contour intervals of 5 m s−1 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Time- and zonal-mean atmospheric zonal wind at 1000 mb

for CESM/DART (blue), ERA-40 (red), and NoAssim (dashed)

3.2.2 Variability of monthly averages
In this section, we focus on the variability around the cli-

matological mean state because it is a more stringent cri-

terion for a DA system and reflects the underlying goals

of the data-constraint endeavour. Here, monthly means are

used to highlight performance on seasonal to interannual

time-scales, showing that there is also reasonable agree-

ment in a collection of synoptic weather patterns and

events.

The Taylor diagrams in Figure 11 provide summary plots of

the performance of the CESM/DART monthly mean anoma-

lies of atmospheric temperature and zonal wind compared

to the NoAssim control experiment and the JRA-55 dataset.

Anomaly correlation (along the radial axis) and anomaly stan-

dard deviation (along the abscissa) are measured relative to

the ERA-40 dataset. The normalized standard deviation is

measured relative to the ERA-40 standard deviation. Each

point on the diagram corresponds to a randomly sampled

grid point from the full horizontal and vertical atmospheric

grid, and the correlation and normalized standard deviation

are computed along the time dimension5,6. The clustering of

the CESM/DART points on the Taylor diagram (blue) toward

high correlations and standard deviations of unity indicates

agreement with ERA-40 in both the magnitude and evolution

of the historical variability. The clustering of the NoAssim

points (yellow) around correlations of zero, but standard devi-

ation of 1 is expected from an unconstrained simulation with

realistic variability characteristics. The JRA-55 points (in red)

are provided to give the reader context – for atmospheric

temperature and zonal wind, the level of agreement between

CESM/DART and ERA-40 tends to be only slightly less than

the agreement between JRA-55 and ERA-40. This can be seen

more quantitatively in the insets of Figure 11, which show

distributions of the differences between the correlation of the

CESM/DART and ERA-40 at each grid point and JRA-55

and ERA-40 at the same grid point. Correlation differences

are nearly always negative, indicating that at most points,

JRA-55 and ERA-40 fields will be in greater agreement than

CESM/DART and ERA-40, albeit by only a small amount.

In the Northern Hemisphere, for both temperature and zonal

wind, at 95% of geographic grid locations, CESM/DART

agrees with ERA-40 at correlation levels that are compara-

ble to JRA-55 within ± 0.1. In the Southern Hemisphere only

50% of points meet this criterion. The enhanced agreement

between JRA-55 and ERA-40 is likely due to their ingestion

5Note that this is not a typical representation of model performance on a Tay-

lor diagram; Taylor diagrams often plot the correlation and standard deviation

computed over the space dimension.
6We sample 5,000 points and statistics are stable at this level.
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FIGURE 11 Taylor diagrams showing CESM/DART (blue), NoAssim (yellow), and JRA-55 (red) monthly mean anomalies of (a) temperature and (b) zonal

wind from 1970 to 1981 referenced to ERA-40. All simulations have been interpolated to the ERA-40 grid prior to analysis. Each point on the plot

corresponds to a grid point in horizontal and vertical space. In this way, the correlation and standard deviations represent time (not space) characteristics of

the simulations. The most densely populated area of the Taylor diagram (essentially the mode of the joint distribution of points) is indicated by the bold dots.

The insets show distributions of the difference between the correlation of the CESM/DART and ERA-40 at each grid point and JRA-55 and ERA-40 at the

same grid point. These are aggregated by hemisphere

of more shared data sources in the 1970s – including surface

pressure measurements, radiosonde humidity, and (probably

most significantly) satellite radiances from infrared sounders.

None of these data sources are included in CESM/DART.

Measurements from the infrared sounder are especially

important for constraint in the Southern Hemisphere; the fact

that they are not used in the CESM/DART is likely a factor in

the reduced Southern Hemisphere consistency.

At most locations in the Northern Hemisphere, the point-

wise time correlations between SST, upper-ocean heat

content, sea level pressure (SLP), and zonal wind stress

datasets and the corresponding CESM/DART fields exceed

0.7 (Figures 12 and 13). In all cases the NoAssim correla-

tions with observations are shown for reference. No formal

significance testing is performed, as the NoAssim refer-

ence correlations can essentially be interpreted as a sample

from a null-hypothesis of “no shared internal variability.”

Consistent with the Taylor diagram comparisons to ERA-40

shown in Figure 11, the maps in Figures 12 and 13 show

lower correlation values in the Tropics and Southern Hemi-

sphere, reflecting the limited in situ data for both constraint

and verification. The time evolution of pattern correlations

are also included, naturally showing greater agreement in the

Northern Hemisphere and always exceeding the NoAssim

reference. For SLP and wind stress there is a clear seasonal

cycle, with exceptionally high pattern correlations in the

Northern Hemisphere winters (routinely exceeding 0.95).

Compared to SLP and zonal wind, both SST and upper-ocean

heat content contain a significantly larger fraction of their

total variability at smaller horizontal scales, and for these

variables we also show the global pattern correlations based

on the leading 20 global empirical orthogonal functions

(resolving approximately 80% of the total variability) to high-

light the coherence of large-scale patterns. Consistent with

these global correlation maps, climate indices that reflect

major modes of interannual climate variability, including the

North Atlantic Oscillation (NAO) index, El Niño Southern

Oscillation indices (Niño3 SST and the Southern Oscillation
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(a) (b)

(c) (d)

(e) (f)

FIGURE 12 (a, c) Pointwise anomaly correlations with HADISST of (a) CESM/DART and (c) the NoAssim monthly average SST. (e) shows pattern

correlations with HADISST in the Northern and Southern Hemispheres for CESM/DART (solid lines) and NoAssim (dashed lines). Pattern correlations

retaining only the leading 20 global EOFs are also shown. (b, d, f) are as (a, c, e) but showing correlations with the EN4 data product [Colour figure can be

viewed at wileyonlinelibrary.com]

Index, SOI) and the North Pacific Index (NPI), are also in

close agreement with existing products (Figure 14).

In general, correlations with ERA-40 precipitation tend to

be lower than the other variables considered (Figure 15). This

is to be expected, as precipitation is not relatable to atmo-

spheric prognostic variables in a straightforward fashion, but

is instead the result of complex interactions involving the con-

vective and microphysics parametrization schemes used in

these models. Nonetheless, CESM/DART precipitation cor-

relation still exceeds NoAssim over most of the globe and

exceeds 0.7 over much of the United States, Europe, and

Australia (where the radiosonde network is most dense).

Comparisons of global monthly variability have been

made against other datasets (not shown) and the results are

qualitatively similar. These include the Hadley Centre SLP

(HADSLP2; Allan and Ansell, 2006), marine surface tem-

perature (HADSST3; Kennedy et al., 2011), vector wind

stress from the International Comprehensive Ocean and

Atmosphere Dataset (iCOADS; Woodruff et al., 2011),

the 20th Century Reanalysis (20CR; Compo et al., 2011)

SLP, and land precipitation from the CRU TS dataset

(Harris et al., 2014).

3.3 Atmospheric synoptic variability – a collection of
results

Since we assimilate in the atmosphere at 6 h intervals,

we are also able to constrain the atmospheric synoptic

variability over much of the Northern Hemisphere. The

observation-space analytics from section 3.1 gave quantita-

tive measures of the 6 h forecast performance. In this section,

we show a collection of further results to give readers a more

physical, qualitative sense of agreement with established

reanalysis and other data sources.

For a visual comparison at specific dates, Figures 16–18

show CESM/DART SLP and precipitation along with

the corresponding ERA-40 variables at 0000 UTC on 3

January 1976, 7 February 1978, and 9 August 1980. For the

CESM/DART SLP fields, the 1010 mb pressure level for five

of the 30 ensemble members is plotted as a grey contour.

These dates are chosen because each of them contains at least

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

(e) (f)

FIGURE 13 As Figure 12, but for (a, c, e) sea level pressure (SLP) and (b, d, f) zonal wind stress, both from CERA20C. Note that the CERA20C atmosphere

is constrained only by surface pressure and surface marine winds. These data sources are not ingested in the CESM/DART experiment [Colour figure can be

viewed at wileyonlinelibrary.com]

one major weather event for which there is documentary evi-

dence. (The level of visual agreement shown here has been

evident for every randomly chosen date we have investigated.)

Fields from 3 January 1976 (Figure 16) depict the gale of

January 1976, associated with wind damage across Northern

Europe and coastal flooding in the British Isles (Shaw et al.,
1976). The blizzard of 1978, which brought record-breaking

snowfall to the northeast United States (Kocin and Uccellini,

1990) is depicted in (Figure 17), and hurricane Allen (at the

time, the strongest hurricane ever recorded in the area) as

it passed into the Gulf of Mexico (Lawrence and Pelissier,

1981) is shown in Figure 18. Both CESM/DART and

ERA-40 show the broad features and timing of each event,

but do not have the resolution to simulate the reported max-

ima in precipitation or minima in SLP. With a hydrostatic,

coarse-resolution atmosphere model, we do not expect to

simulate the regional details of these events, but their identi-

fiability in CESM/DART provides another piece of evidence

that relevant characteristics of synoptic variability are being

constrained. More important than any individual weather

event, we note that the global patterns of SLP are visually

consistent between CESM/DART and ERA-40. Precipitation

is less consistent between these products, but the location

of most of the major precipitation features in the Northern

Hemisphere are co-located in ERA-40 and CESM/DART,

with little agreement in the Southern Hemisphere.

A closer inspection of hurricane Allen is shown in Figure 19

as it passed through the Gulf of Mexico. The hurricane path

closely follows reports by the NOAA National Hurricane

Center (the entire reported track is indicated by white dots,

with a circle at the specified date). One of the advantages

of using a coupled model in the assimilation procedure is

that coupled interactions can be simulated. Hurricane Allen
is followed by a “cool wake,” resulting from a combination

of turbulent surface heat flux out of the ocean and from mix-

ing induced entrainment of cooler waters from depth. The

details of the SST response to hurricane Allen are not ver-

ified here because archival high-resolution satellite SST is

difficult to obtain prior to 1981. However, they represent the

expected ocean response to a high-intensity hurricane in the

Gulf of Mexico (e.g. Price, 1981). A similar plot is shown

of major hurricane Harvey as it travels north off the coast of

the northeast USA in mid-September 1981 (Figure 20). The

Advanced Very High Resolution Radiometer (AVHRR) data

http://wileyonlinelibrary.com
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FIGURE 14 A collection of climate-relevant indices from CERA20C and HADISST and ensemble mean CESM/DART simulation. (a) Anomalous SLP at

Lisbon and Reykjavik. The difference of standardized SLPs at these locations can be used to indicate the strength of the North Atlantic Oscillation (NAO). (b)

The North Pacific Index (defined as the average SLP anomaly from 30 to 65◦N and 160◦E to 140◦W), pressures at Darwin, Tahiti and their difference (the

Southern Oscillation Index). (c) The Niño3 index (average of SST from 5◦N–5◦S, 90–150◦W) from the ensemble mean of CESM/DART system and the

HADISST dataset. Correlation coefficients between CESM/DART and CERA20C indices are noted, with correlation coefficients between NoAssim and

CERA20C indices in parentheses [Colour figure can be viewed at wileyonlinelibrary.com]

are available as a SST analysis during this period (Reynolds

et al., 2007), and they are plotted for comparison to the

CESM/DART SST. The simulation of hurricane Harvey is

not as constrained as hurricane Allen; the low pressure centre

is systematically located west of the reports, and the larger

uncertainty is reflected in the disorganization of ensemble

members (contours are the 1010 mb isobar for ten ensem-

ble members). Nevertheless, the trajectory is approximately

correct. A cool wake in SST is again simulated, and shows

qualitatively good agreement with the AVHRR data in terms

of the location of the wake. The intensity of the cooling is

markedly low (by a factor of 2 or more) likely (in part) due

http://wileyonlinelibrary.com
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FIGURE 15 As Figure 13, but showing correlation with ERA-40 total (large-scale + convective) precipitation [Colour figure can be viewed at

wileyonlinelibrary.com]

to the coarse horizontal and vertical resolution in the ocean

model (e.g. Li and Shriver, 2016). The AVHRR data are

not ingested into the CESM/DART system in any form, so

this feature in the model stems exclusively from the coupled

model dynamics.

The frequency of atmospheric blocking events are another

way to assess whether this CESM/DART experiment

is demonstrating historically accurate synoptic variabil-

ity. Atmospheric blocking events are large-scale, persistent

atmospheric pressure patterns that act to direct the trajectories

of storms and cyclones. Here, blocking events in the North-

ern Hemisphere are defined as in D’Andrea et al. (1998). The

frequency of occurrence of blocking events (as a function

of latitude) is generated through counting exceedances of

a threshold criterion applied to the meridional gradient of

the 6 h 500 mb geopotential height fields. Figure 21 shows

a comparison of the CESM/DART blocking frequency for

eight ensemble members over 6 years from 1976 to 1981. In

both the Northern Hemisphere winter and summer seasons,

CESM/DART blocking frequency is in excellent agreement

http://wileyonlinelibrary.com
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FIGURE 16 Snapshots of 6 h forecasts of (a, b) SLP (colour shading) and (c, d) total (large-scale plus convective) precipitation rate on 3 January 1976 at

0000 UTC from (a, c) CESM/DART and (b, d) ERA-40. In (a, b) grey contours denote 1010 mb (five of the 30 CESM/DART ensemble members are shown).

In (c, d) precipitation rates (colour shading) only > 0.05 mm day−1 are shown. Note the gale of January 1976 off the coast of northern Europe

FIGURE 17 As Figure 16, but for 7 February 1978. Note the blizzard of 1978 in the northeast United States [Colour figure can be viewed at

wileyonlinelibrary.com]

with the JRA-55 reanalysis datasets. The 20CR dataset is

less consistent with both CESM/DART and JRA55 in the

Northern Hemisphere summer season. As the JRA-55 uses

a more complete set of observational constraints than 20CR

in their reanalysis, we believe it represents a more accu-

rate measure of the historical blocking frequency. These

results are consistent with the close agreement between

CESM/DART and ERA40 SLP shown in the three snapshots

in Figures 16–18, but provide a more time-integrative mea-

sure of the statistics of synoptic variability.

4 DISCUSSION

4.1 Methodological considerations

As a proof of concept, this article has highlighted just one

configuration of the CESM/DART system. However, taking

a broader perspective, one of the core strengths of this sys-

tem is its modularity. The DART system was designed at a

foundational level to interface with any geophysical model,

with diverse observational data sources and with options for a

http://wileyonlinelibrary.com
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FIGURE 18 As Figures 16 and 17, but for 9 August 1980. Note hurricane Allen in the Gulf of Mexico [Colour figure can be viewed at wileyonlinelibrary.com]

variety of ensemble update algorithms. Likewise, the CESM

system also has an intrinsically modular design, wherein a

diverse set of component configurations can be prototyped

with relative ease. The maintenance of this core modular-

ity is one of the key tenets of the CESM/DART system

because it encourages novel research applications of the sys-

tem while still maintaining state-of-the-art modelling and

assimilation algorithms and software facilities. Indeed, there

is a notably low barrier to entry: numerous researchers have

set up and used CESM-component models with DART for

research applications with only a few months of dedicated

work. Although it is not required that modular systems be

purely ensemble-based, there is a natural synergy between

ensemble DA systems and modular DA. It is useful as a

point of discussion to consider the role that the choice of DA

method plays in supporting the tenet of modularity.

Traditionally, variational systems use parametric formu-

lations of a background covariance, with the background

mean defined through a model forecast (or ensemble of fore-

casts). In hybrid variational-ensemble methods, information

from ensemble model forecasts is used to augment the back-

ground covariance (e.g. Hamill and Snyder, 2000; Buehner,

2005; Penny, 2014; Bonavita et al., 2016), but a paramet-

ric background covariance is still necessary. The problem of

finding the most likely model state given the observations

is then solved through the minimization of a multivariate

cost function7. Relevant to the discussion of modularity, in

7This is easier said than done. Employing efficient solvers for 3D-Var and

4D-Var in global geophysical systems is a serious endeavour to which a great

deal of research and engineering are devoted. Discussions of the iterative

solvers at ECMWF and future directions can be found in Fisher et al. (2009;

2012) and Tshimanga et al. (2008).

traditional variational systems the background covariance is

defined by the practitioner – it is not diagnosed purely as an

emergent property of the evolving dynamical state. One clear

benefit to running a system with prescribed or highly param-

eterized background covariances is that the system can be

designed to behave consistently, efficiently, and with attrac-

tive user-defined characteristics. For example, it is common

in practice to formulate the variational minimization problem

in the ocean and the atmosphere such that physical balances

between variables (e.g. mass conservation, geostrophy) are

imposed in the update (e.g. Kleist et al., 2009; Mogensen

et al., 2012)8. The imposition of variable transformations

that ensure balance is not just physically desirable, it is also

linked to the efficiency of the numerical solvers (Derber and

Bouttier, 1999). In contrast, pure ensemble methods assume

that nearly all the relevant features of the multivariate dis-

tribution can be estimated from the statistics of an ensemble

of short-term model forecasts. This potentially allows for

a richer and more realistic manifestation of the prior dis-

tribution and its non-stationarity. Just as important, it frees

the practitioner from the need to develop descriptions of

(often complicated) multivariate joint distributions or to have

a priori intuition about the dominant physical balances of

the system. Not only does this support the schema of “mod-

ular data assimilation”, wherein the same basic DA system

can be used for different geophysical systems, it also facili-

tates the rapid development of DA capabilities for component

models that may not have robust disciplinary traditions in

DA. This is a key aspect within the context of the CESM.

8Ensemble methods can also be made to respect physical constraints, but this

option is not as frequently exercised.

http://wileyonlinelibrary.com
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FIGURE 19 Six-hour forecast snapshots of (a, c, e, g) SLP and (b, d, f, h) SST associated with hurricane Allen in the Gulf of Mexico at 0000 UTC on (a, b) 7,

(c, d) 8, (e, f) 9, and (g, h) 10 August 1980. To highlight the SST cool wake, the difference between SST at each time and that on 6 August 1980 (before the

hurricane passed through) are shown. The hurricane track reported by the NOAA National Hurricane Center is shown as white dots and the circles

correspond to the plotted date. Black contours show the 1000 mb (−1◦C) SLP (SST) values for ten of the 30 ensemble members [Colour figure can be viewed

at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 20 As Figure 19, but for major hurricane Harvey as it passed northward in the Atlantic from 15 to 18 September 1981. Black contours show the

1010 mb (−0.4◦C) SLP (SST) levels for ten of the 30 ensemble members. Also included (c, f, i, l) is SST from the NOAA daily AVHRR-only SST optimal

interpolation product (Reynolds et al., 2007). This data source is only available from 1981 and was not assimilated in this experiment. The SST differences

are with reference to 14 September 1981 to highlight the cold wake [Colour figure can be viewed at wileyonlinelibrary.com]

Additionally, ensemble DA extends naturally to initialized

ensemble prediction, which, as discussed in the Introduction,

is garnering increasing interest in the CESM community.

Of course, there are drawbacks to using an ensemble-based

approach for global-scale DA that must be balanced against

the benefits. The foremost challenge (essentially a “fixed

cost” of ensemble DA) is the computational expense of run-

ning multiple realizations of global models – typical ensemble

sizes for global ocean or atmosphere models range from 10

to 100 members. These ensemble sizes are determined by

practical computing limitations and it is widely understood

that most global geophysical problems have an effective

dimension that is orders of magnitude larger than the avail-

able number of samples. (There is evidence that ensem-

ble sizes of 103-104 can be beneficial for atmospheric

assimilation (Miyoshi et al., 2014). Under these condi-

tions, the problem of sampling error in the computation

of ensemble-based background statistics cannot simply be

ignored. In the context of ensemble Kalman filters, the two

most common strategies for dealing with the sampling error

http://wileyonlinelibrary.com
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FIGURE 21 Atmospheric blocking frequency for eight of the CESM/DART ensemble members (blue lines) from 1976 to 1981 during the Northern

Hemisphere (a) winter (December, January, February) and (b) summer (June, July, August) months. Blocking frequency from JRA-55 (green line) and the

20CR (dashed red line) are included for comparison

problem are (a) “localization” of the ensemble covariance

(e.g. Hamill et al., 2001; Furrer and Bengtsson, 2007) wherein

the influence of an observational innovation on geophysi-

cally distant model-state variables is mitigated by a scaling

factor, and (b) artificial “inflation” of the ensemble vari-

ance (e.g. Mitchell and Houtekamer, 2000; Anderson, 2009;

Whitaker and Hamill, 2012; Houtekamer and Zhang, 2016).

In practice, these are heuristic strategies whose effectiveness

depends on parameters that are only indirectly associated with

physical processes in the model. While more generic than

variational systems, it is inadvisable to treat ensemble systems

as “black boxes”. Discussion of the nuances of localization

and inflation are not the focus of this paper, but we mention

them here to highlight that realization of the potential benefits

of ensemble methods in practice is not trivial.

Further, the admittance of dynamic, sample-based covari-

ances in large-dimensional systems vastly increases the com-

plexity of the DA system; the interactions between the model

dynamics and the DA can very often lead to unexpected and

non-intuitive system behaviour. It is precisely because the

practitioner has only limited control of the solution that under-

standing spurious behaviour and constructing appropriate

remedies can be extremely challenging.

4.2 Computational considerations in regard to CESM
interfacing with DART

There are substantial computational costs associated with

naively exploiting the CESM/DART modularity and generi-

cism that were brought to light in the process of setting up

and running this experiment. With the CESM/DART sys-

tem, computational performance became a first-order con-

cern. In part, this was because the prototype simulation

was intended to be over 50 years in length. Our inability to

accomplish a simulation of that length within a reasonable

time horizon forced an examination of the computational

bottlenecks.

We ran the CESM/DART integration on NCAR’s Yel-

lowstone (CISL, 2012) and the DOE-NERSC9 Edison

high-performance computing resources. Using a range of

1350–1800 cores, we had a typical throughput of 10–20

wall-clock minutes per 6 h assimilation cycle. Performance

varied significantly between the two machines. Over the 12

years of simulation, we averaged a cost of about 1 million

core-hours per simulation year. Inclusive of job-queuing,

the frequent need to stop production to archive output to

long-term tape storage, computing and disk system failures,

and diagnosing dynamical errors induced through the assim-

ilation in any of the 30 ensemble forecast members, we could

expect to accomplish 1 year of simulation every 3–6 weeks.

Only a small fraction of the total run-time of the joint

CESM/DART system was spent in the DA update (5–10%),

and the integration of the ensemble forecasts was only about

25% of the total CESM/DART program time. Where was most

of the time spent?

The majority of the time spent by the DART program was

in redistributing data in memory such that DART could com-

pute the update to the ensemble members and reassembling

the data such that it could be used for re-initializing CESM. It

is important to note that this data movement should not strictly

be categorized as I/O (which we estimate to be as low as 5%

of the total cost of the system). Although CESM and DART

pass data through files, there is an intrinsic cost to the data

movement from the “state-complete” data-storage strategy

of CESM to the “ensemble complete” data-storage strategy

of DART and back again that the elimination of file-based

transfer will not mitigate. (This is sometimes termed the

9US Department of Energy’s National Energy Research Scientific Comput-

ing Center
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transpose cost.) A new release of DART (“Manhattan”10),

which is available at the time of writing, includes an inter-

nal redesign of the way that data are stored in memory.

Among other things, it reduces the number of transposes in

a DART state-update. More generally, both hardware- and

software-based strategies for speeding up inter-executable

communication on distributed memory computers with little

or no impact on the communicating programs are emerging

within the community (e.g. Liao et al., 2017).

The majority of time spent by the CESM was in its start-up

initialization phase at the start of each 6 h assimilation cycle.

Typical of any model start-up procedure, this includes read-

ing the prognostic state vectors and metadata, distributing

the data in memory, and making preparatory computations

to begin integration. The expense incurred through the fre-

quent CESM re-initializations (four times per simulation day)

is particularly pernicious because there is currently no com-

parable use-case within the CESM community; runtime ini-

tialization is an insignificant cost when integrating for years

to centuries, which is more typical of a CESM use-case.

The software engineering required to ameliorate the issue is

non-trivial and requires a significant rethinking of how CESM

and DART should interface. This issue has been present in the

POP/DART and CAM/DART efforts, but resolving problems

associated with the scientific performance of those systems

took precedence over a focus on computational performance.

The need to consider these performance issues is not unique

to the CESM/DART project. In any ensemble Kalman filter

code designed to accommodate the large state vectors typi-

cal of geophysical models, the choice of how to move data

between the forecast functionality (the model) and the update

functionality (the DA algorithm), as well as how to minimize

the overhead of repetitive model start-up costs will be key

factors in the overall computational performance.

For systems dedicated to a specific use-case (e.g. ECDA;

Zhang et al., 2007) combining the model and DA into a sin-

gle executable can be a useful strategy for managing these

costs. The upfront software engineering cost to architect these

system will be larger – but the performance gains can be sig-

nificant. There is at least one other modular ensemble Kalman

filter system, also designed to accommodate the codes and

state vectors typical of geophysical DA, that has taken the

approach of combining the model and DA codes into a sin-

gle executable. Like DART, the Parallel Data Assimilation

Framework (PDAF; Nerger and Hiller, 2013) embraces mod-

ularity as a design criterion, and employs a scalable imple-

mentation of the ensemble Kalman filter update algorithm.

A distinguishing characteristic of the PDAF system is that it

is meant to be embedded within the model code as a series

of subroutines. In theory this strategy eliminates the need to

use files to communicate state vector information between the

10https://www.image.ucar.edu/DAReS/DART/Manhattan/documentation/

html/Manhattan_release.html

model and DA update module and the costs associated with

restarting the model at each assimilation step. On this basis

alone, however, transpose and data movement costs are not

eliminated. To our knowledge the PDAF system has never

been implemented with the CESM or in a multi-component

DA use-case and so performance characteristics and ease of

implementation with this system is unknown.

This discussion highlights the significant software design

challenges that emerge when trying to balance the genericism

of the CESM and DART systems with the desire for a more

efficient and scalable joint-system. These are potential fac-

tors for many large state vector, complex geophysical models

that must interfacing with a separate executable program on

high-performance distributed memory computers.

4.3 Ongoing developments

Regarding the future of CESM/DART development, a key

factor is that there is currently no operational mandate for

the generation of reanalyses or initialized climate forecasts

at NCAR. This gives NCAR scientists and CESM collabora-

tors the freedom to target emerging applications that require

DA, research questions relevant to the field of DA science,

and other specialized use-cases. Two examples of this are (a)

the experimental implementation of a “strongly coupled” DA

update, and (b) modification of the POP/DART system to use

static ensemble perturbations, essentially creating an ensem-

ble optimal interpolation scheme (e.g. Oke et al., 2002; 2008;

Counillon and Bertino, 2009)

In contrast to the weakly coupled system described here,

in a strongly coupled system information from observations

of each component can impact all the components during the

update step. In our CESM/DART framework, this is accom-

plished as a straightforward extension of the DART state

vector to include the prognostic states of both the ocean and

the atmosphere. So in this case, our framework has sup-

ported a natural research progression – single-component DA

systems (POP/DART and CAM/DART) were extended to a

weakly coupled system, which is now being extended to a

strongly coupled system. The strongly coupled system was

prototyped specifically to address open research questions on

the value and best practices for global coupled DA (Sluka

et al., 2016; Penny and Hamill, 2017). Set-up was done at

a modest incremental development cost (several months of

expert-person time).

Regarding the project on high-resolution ocean assimila-

tion, this project was designed to support cutting-edge science

in initialized high-resolution global coupled-model climate

prediction. While the DART developers did not design the

system with the use of static perturbations in mind, the over-

head for implementing this option was trivial (order weeks of

expert-person time). For computationally expensive models

like an eddy-resolving global ocean model (1/10◦ horizontal

resolution), where running ensembles is simply not feasible,

having software that can easily be configured to support a

https://www.image.ucar.edu/DAReS/DART/Manhattan/documentation/html/Manhattan_release.html
https://www.image.ucar.edu/DAReS/DART/Manhattan/documentation/html/Manhattan_release.html
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less-sophisticated background distribution is a sensible way

to achieve specific science objectives.

Although the results of our 12-year coupled simulation are

publicly available (by request to A. Karspeck and G. Dan-

abasoglu), the CESM/DART is best viewed as a system,

not as a product. Currently, we envisage that resources will

be primarily targeted toward supporting community research

through prototyping new system configurations, facilitating

the development of more complex capabilities, and aiming

to make the system more user-friendly and computationally

affordable.

5 CONCLUSIONS

In this paper we have introduced the first implementation

of a coupled global DA system developed with the DART

DA software and using the CESM. A 12-year experiment

(from 1970 to mid-1982) assimilating conventional in situ
atmospheric and oceanic observations is described. Multi-

ple lines of evidence are presented to show that this system

can represent monthly historical variability of the climate,

major modes of climate variability, and synoptic weather

patterns in the Northern Hemisphere. Anomaly correlation

with well-established gridded products in terms of SST, sur-

face momentum stress, SLP, precipitation and upper-ocean

heat content are presented. In all cases the correlations sig-

nificantly exceed a free run of the coupled model in the

Northern Hemisphere. Root mean square errors of 6 h prior

forecasts against radiosonde temperature and winds are also

presented. On a global average, the fit to atmospheric obser-

vations exceeds that of a 24 h persistence forecast at all levels

in temperature and at upper levels (outside the atmospheric

boundary layer) for vector winds. In terms of the background

error in 500 mb radiosonde temperature (a commonly used

evaluation metric), the CESM/DART experiment shows per-

formance that is slightly lower but within the range of the

published estimates of established reanalysis products. In

the atmosphere, we also show that the ensemble spread is

a reasonable indicator of the root mean square error – this

is a first-order indication of the reliability of the ensemble.

Finally, we show a few examples of global and regional syn-

optic weather features to demonstrate the level of agreement

with reanalysis and weather observations.

The results presented here are very promising, as there was

no explicit tuning of the coupled system and only a subset

of all available observations was used. There is every rea-

son to believe that the system has the potential for greater

performance.

We have also presented a brief discussion of some of

the computational and resource challenges that were brought

to light over the course of this project. Because ultimately

CESM will rely on community involvement to advance the

research use of CESM/DART, resource usage and ease-of-use

issues are currently the most pressing challenges.

As an introductory paper to the CESM/DART system, this

paper necessarily leaves the more interesting questions about

coupled assimilation unanswered. A few examples are:

• For what class of physical phenomena and applications

does coupled assimilation present a quantifiable benefit

over the standard single-component approaches to DA?

• In regard to coupled DA frameworks and methodologies,

what are the best strategies to account for the abrupt tran-

sition in time and space scales across component bound-

aries?

• Does the value of observational assets change when recon-

sidered in the context of their ability (or lack thereof) to

constrain across boundaries?

Moving forward, the CESM/DART system has the potential

to be used in a research context to investigate these and many

other applied DA research questions.
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